High accuracy data representation via sequence of neural networks

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representation of functional data in neural networks

Functional Data Analysis (FDA) is an extension of traditional data analysis to functional data, for example spectra, temporal series, spatio-temporal images, gesture recognition data, etc. Functional data are rarely known in practice; usually a regular or irregular sampling is known. For this reason, some processing is needed in order to benefit from the smooth character of functional data in t...

متن کامل

Convolutional Neural Networks using Logarithmic Data Representation

Recent advances in convolutional neural networks have considered model complexity and hardware efficiency to enable deployment onto embedded systems and mobile devices. For example, it is now well-known that the arithmetic operations of deep networks can be encoded down to 8-bit fixed-point without significant deterioration in performance. However, further reduction in precision down to as low ...

متن کامل

Nonparametric Weight Initialization of Neural Networks via Integral Representation

A new initialization method for hidden parameters in a neural network is proposed. Derived from the integral representation of neural networks, a nonparametric probability distribution of hidden parameters is introduced. In this proposal, hidden parameters are initialized by samples drawn from this distribution, and output parameters are fitted by ordinary linear regression. Numerical experimen...

متن کامل

Optimal compressed representation of high throughput sequence data via light assembly

The most effective genomic data compression methods either assemble reads into contigs, or replace them with their alignment positions on a reference genome. Such methods require significant computational resources, but faster alternatives that avoid using explicit or de novo-constructed references fail to match their performance. Here, we introduce a new reference-free compressed representatio...

متن کامل

Data Clustering Via Spiking Neural Networks

A new spiking-neural-network model for partitioning data into clusters has been developed. The learning process is based on the Spike Timing-Dependent Plasticity rule under the Hebbian Learning framework. With temporally encoded inputs, the synaptic efficiencies of the delays between the pre and postsynaptic spikes can store the information of different data clusters. Various simulation results...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Geodaetica et Geophysica Hungarica

سال: 2003

ISSN: 1217-8977,1587-1037

DOI: 10.1556/ageod.38.2003.3.4